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Abstract 

The present study numerically investigates the phenomena of the steady two-dimensional 
magnetohydrodynamic(MHD) stagnation-point and heat-mass transfer flow of a nanofluid past a shrinking sheet 
with the influence of thermal radiation, heat generation and chemical reaction. The effect of Brownian motion and 
thermophoresis are well-thought-out instantaneously. A similarity solution is presented which depends on the 
magnetic parameter )(M , Grashof number )( rG , modified Grashof number )( mG , heat generation parameter )(Q ,
radiation parameter )(R , Brownian motion number )( bN , thermophoresis number )( tN , Prandtl number )( rP , Lewis 
number )( eL , Chemical reaction parameter )( and the ratio of the rate constants of the shrinking velocity to the 
free stream velocity )( . A shooting technique is employed to solve this similarity model numerically. The results 
of the present analysis is going to observe the velocity, temperature, concentration, the wall shear stress, the Nusselt 
number and the Sherwood number at the different situation and dependency of different parameters. A comparative 
study is also being shown between the previously published results and the present results for the accuracy and 
interesting findings of the present research. 

© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of organizing committee of the 6th BSME International Conference on Thermal Engineering 
(ICTE 2014). 

Keywords: Magnetohydrodynamic stagnation-point flow, Heat transfer, Nanofluid, Shrinking sheet. 

* Corresponding author. Mob.: + 880 1913 262715 
E-mail address:  wahidmathku@gmail.com 

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 6th BSME International Conference on Thermal Engineering (ICTE 2014)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.05.025&domain=pdf


399 Mohammad Wahiduzzaman et al.  /  Procedia Engineering   105  ( 2015 )  398 – 405 

1. Introduction 

   Boundary layer flow behavior over a stretching surface is vital in engineering processes, such as, materials 
manufactured by extrusion, annealing and tinning of copper wires, glass blowing, continuous cooling and fibre 
spinning. At the time of manufacture of these sheets, the melt issues from a slit and is subsequently stretched to 
achieve the desired thickness and the final product of desired characteristic depends on the rate of cooling and the 
process of stretching. For the flow over a shrinking sheet, the fluid is attracted towards a slot and as a result it shows 
quite different characteristics from the stretching case. From a physical point of view, vorticity generated at the 
shrinking sheet is not confined within a boundary layer and a steady flow is not possible unless either a stagnation 
flow is applied or adequate suction is applied at the sheet. As discussed by Goldstein [1], this new type of shrinking 
flow is essentially a backward flow. Miklavcic and Wang [2] were the first who have investigated the flow over a 
shrinking sheet with suction effect. Steady two-dimensional and axisymmetric boundary layer stagnation point flow 
and heat transfer towards a shrinking sheet was analyzed by Wang [3]. The existence and uniqueness results for 
MHD stagnation point flow over a stretching/shrinking sheet were considered by Van Gorder et al.[4].. All studies 
mentioned above refer to the stagnation point flow towards a stretching/shrinking sheet in a viscous and Newtonian 
fluid. Bachok et al. [5] investigated the effects of solid volume fraction and the type of the nanoparticles on the fluid 
flow and heat transfer characteristics of a nanofluid over a shrinking sheet. Effects of magnetic field and thermal 
radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface were investigated by Samir 
Kumar Nandy and  Ioan Pop [6]. To the author's knowledge no studies have thus far been communicated with 
regard to MHD boundary layer stagnation flow and heat transfer of a nanofluid past a shrinking sheet with thermal 
radiation, heat generation and chemical reaction. The objective of the present work is therefore to extend the work of 
Samir Kumar Nandy and  Ioan Pop [6] by taking Heat Generation and Chemical Reaction. The effects of magnetic 
field parameter )(M , Brownian motion parameter )( bN , thermophoresis number )( tN , Prandtl number )( rP , Lewis 
number )( eL , radiation parameter )(R , Grashof number )( rG , Modified Grashof umber )( mG , Chemical Reaction 
parameter )( and the velocity ratio parameter )(  on the relevant flow variables are described in detail. The 
present study is of immediate interest to all those processes which are highly affected with heat enhancement 
concept e.g. cooling of metallic sheets or electronic chips etc. 

2.  Flow analysis 

   Consider the steady two-dimensional MHD 
stagnation-point flow of an incompressible viscous 
electrically conducting nanofluid impinging 
normally on a shrinking sheet. The fluid is subjected 
to a uniform transverse magnetic field of strength 0B
. Fig. 1 describes the physical model and the 
coordinate system, where the x and y  axes are 
measured along the surface of the sheet and normal 
to it, respectively. It is assumed that the velocity of 
the stretching/shrinking sheet is cxxuw )(  and the 
velocity outside the boundary layer is axxU )( ,
where a  and c  are constants with 0a . We note 
that 0c  and 0c correspond to stretching and 
shrinking sheets respectively. Instantaneously at 
time 0t  , temperature of the plate and species 
concentration are raised to )( TTw  and

)( CCw  respectively, which are thereafter maintained constant, where wT , wC  are temperature and species 
concentration at the wall and T , C are temperature and species concentration far away from the plate 
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respectively.The basic steady conservation of mass, momentum, thermal energy and nanoparticles equations for 
nanofluids can be written in Cartesian coordinates x and y  as,  
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In writing Eq. (2), we have neglected the induced magnetic field since the magnetic Reynolds number for the flow is 
assumed to be very small. This assumption is justified for flow of electrically conducting fluids such as liquid metals 
e.g., mercury, liquid sodium etc. Here u  and v  are the velocity components along the x  and y  directions, 
respectively, )(xU  is the free stream velocity, T  is the fluid temperature and C  is the nanoparticle volume 
fraction,  is the electrical conductivity of the fluid,  is the kinematic viscosity, m  is the thermal diffusivity, 
is the density of the base fluid, BD is the Brownian diffusion coefficient, TD  is the thermophoresis diffusion 
coefficient, pC  is the specific heat at constant pressure, rq is the radiative heat flux and  is the ratio of the 

effective heat capacity of the nanoparticle material to the heat capacity of the ordinary fluid and rK  is the chemical 
reaction parameter. It is assumed that the wall temperature wT  and the nanoparticle volume fraction wC  are 
constant at the surface. Also when y  tends to infinity, the ambient values of the temperature and the nanoparticle 
volume fraction attain to constant values of T  and C , respectively.  The boundary conditions for the problem are; 
                                      cxuu w , 0v , wTT , wCC    at   0y

                                      axxUu )( , TT , CC        as   y                                                              (5) 
The radiative heat flux rq  is described by Rosseland approximation (see [35]) such that 
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where,  is the Stefan-Boltzmann constant and  1K is the mean absorption coefficient. Assuming the temperature 

difference with in the flow is such that 4T can be expanded in a Taylor series about T and neglecting higher order 

terms, we get  4
3

34 34 TTTT . Hence from Eq. (6), using the above result, we have    
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2. Mathematical Formulation 

   To attain the similarity solution of Equations. (1)–(4) with the boundary conditions (Eq. (5)), the stream function 
and the dimensionless variables can be defined as follows: 
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where the stream function  is defined in the usual way as 
y

u  and 
x

v .

)(faxu                                           

)(fav                                          
Using the above mentioned non-dimensional variable, the non-linear, non-dimensional, coupled ordinary differential 

equations have been obtained as; 
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where the notation primes denote differentiation with respect to   and M  is the dimensionless magnetic 
parameter, R  is the thermal radiation parameter, rG  is the Grashof number, mG  is the Modified Grashof number, 

T is the Thermal convective parameter, M is the Mass convective parameter, rP  is the Prandtl number, and bN
is the Brownian motion parameter,  tN is the thermophoresis parameter, Q  is the heat source parameter and eL is
the Lewis number,  is the Chemical reaction parameter, eR is the Local Reynolds number  which are defined as 
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Eq. (10) shows that the temperature actually does not depend on Prandtl number )( rP and the thermal radiation 
parameter )(R independently, but depends only on a combination of them which is the effective Prandtl number 

)( reffP . Introducing the effective Prandtl number 
R

PP r
reff 41 ,

 Eq.(10)  can be written as 
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The effect of the thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of 
various boundary layer flows is discussed in some details in the reference [36]. 
The corresponding boundary conditions are 

00)(f ,
a
cf )(0 , 10)( , 10)(         at   0

                                            1)(f , 0)( , 0)(                            as                                    (14) 
where  is the ratio of the rates of the stretching/shrinking velocity and the free stream velocity. 
It is to be noted that this boundary value problem reduces the classical problem of flow and heat transfer due to a 
stretching/shrinking surface in a viscous fluid when 0tb NN . In this case, the boundary value problem for 
becomes ill-posed without physical significance. The physical quantities of interest are the skin friction coefficient 

fC , the local Nusselt number xNu  and the local Sherwood number xSh which are defined as 
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where w  is the shear stress along the stretching surface, wq  and mq  are the wall heat and mass fluxes, 
respectively. Hence, using  Eqs. (8) and (15), we get 
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where, xxUR
xe

)( is the local Reynolds number based on the free stream velocity )(xU .

3. Results and discussion 

   Equations. (9), (11) and (13) subject to the boundary conditions (Eq. (14)) have been solved numerically using 
sixth order Rung–Kutta method with shooting technique for some values of the physical parameters involved in the 
present problem. In order to investigate the physical representation of the problem, the numerical values of velocity 

)( f temperature )(  and concentration )( have been  computed for resultant principal parameters. Fig. 2 shows 
the trajectories of skin friction coefficient )(0f with 0  (shrinking sheet) and 0  (stretching sheet) for 

different values of the magnetic parameter )(M . The figure reveals that the values of )(0f  decreases as 

decreases In Fig. 3, the temperature gradient at the sheet (the Nusselt number)  )(0 , which is proportional to the 
rate of heat transfer from the sheet, is plotted for different values of the magnetic parameter M . It is observed that 

)(0  decreases with an increase in M . On the other hand, influence of the magnetic parameter M  on the 

Sherwood number )(0  is shown in Fig. 4. The figure reveals that )(0  decreases when M  increases. 
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The effect of the magnetic parameter )(M  on the horizontal velocity component )(f  is  shown in Fig. 5. The 
figure indicates that the velocity increases with the increasing values of the magnetic parameter )(M . From a 
physical point of view, this follows from the fact that as in 
this case, Lorentz force is positive and consequently as M
increases, this Lorentz force is also increases and hence 
accelerates the flow.  Fig. 6 represents the variation of the 
temperature distribution )(  for several values of M .
The figure exhibits the temperature decreases with increase 
in M . Physically this is explained as follows. The extent of 
reverse cellular flow above the sheet decreases with 
increase  in M  and as a result, the temperature field is 
influenced by the advection of the fluid velocity above the 
sheet. The effects of the Brownian motion parameter )( bN
and thermophoresis parameter )( tN on temperature profiles 

)(  are shown in Figs. 7 and 8.  It is observed that with 
the increasing values of bN  and tN , the fluid temperature 

decreases and increases respectively. For small particles, 
Brownian motion is strong and the parameter bN  will have 
high values and for large particles, bN  will have small 
values. Hence Brownian motion can exert a significant 
enhancing influence on temperature profiles and the 
temperature in the boundary layer increases with the 
increase in bN . Again thermophoresis parameter )( tN
also serves to warm the boundary layer for low values of 
Prandtl number )( rP  and Lewis number )( eL . Fig. 9 shows 
the influence of effective Prandtl number )( reffP on the 

temperature profile )(  for fixed values of other 
parameters. It is to be noted that reffP  is nothing but a 

simple rescaling of the Prandtl number )( rP  by a factor 
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involving the radiation parameter )(R . It is observed from the figure that the temperature at a point decreases with 
an increase in the effective Prandtl number except a small region near the sheet for the first solution branch. From a 
physical point of view, if reffP  increases, the thermal diffusivity decreases and this phenomenon leads to decrease 

the thermal boundary layer thickness. But, interestingly, for the second solution, up to a certain region, )(
increases as reffP increases and beyond this region, )(  decreases as reffP  increases. The variation of the 

concentration profiles )( for different values of the Lewis number )( eL  and Brownian motion parameter )( bN
are shown in Figs. 10 and 11, respectively. Generally Lewis number, the ratio of thermal diffusivity to mass 
diffusivity, is used to characterize fluid flows where there is simultaneous heat and mass transfer by convection. Fig. 
10  shows that the solution branches of )( decreases with an increase in eL . The same feature as in the case of 

eL  is also observed for the Brownian motion parameter bN  and is depicted in Fig. 11. Presentation of full stability 

analysis is beyond the scope of the present work since a stability analysis requires an unsteady flow, whereas our 
problem is a steady one.  

3. Conclusion 

The present paper deals with the analysis of MHD Convective Stagnation Flow of  Nanofluid over a Shrinking 
Surface in the presence of thermal radiation, heat generation and chemical reaction. Numerical solutions of the 
resulting system of nonlinear ordinary differential equations are obtained by using the shootingmethod coupled with 
Runge-Kutta scheme. The effects of various parameters such as magnetic field parameter )(M , Brownian motion 
parameter )( bN , thermophoresis number )( tN , Prandtl number )( rP , Lewis number )( eL , radiation parameter )(R ,
Grashof number )( rG , Modified Grashof umber )( mG , Chemical Reaction parameter )( and the velocity ratio 
parameter )(  on the dimensionless velocity, temperature, and concentration profiles have been studied graphically. 
The influence of different parameters of on the skin friction, Nusselt number, and  Sherwood number are shown 
graphically as well. From the present numerical investigation, the following inferences can be drawn: 

i. Velocity increases but temperature profile decreases with the increasing values of M .
ii. With the increasing values of bN  and tN , the fluid temperature decreases and increases respectively.  
iii. It is observed that the temperature at a point decreases with an increase in the effective Prandtl number.  
iv. The solution branches of )( decreases with an increase in eL . The same feature as in the case of 

eL  is also observed for the Brownian motion parameter bN .
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